An FPGA Resource Adaptable General Neural
Network Accelerator

Chengsen Dong
School of Engineering
University of Central Lancashire
Preston, UK
cdongl @uclan.ac.uk

Abstract— As Artificial Intelligence is becoming embedded
in people’s lives, the evolution of Internet of Things is moving
towards edge computing where the speed and power
consumption in data processing is critical. The feature of re-
programmability and power efficiency has made FPGA a
promising edge processing hardware platform for accelerating
deep neural networks. An FPGA ‘resource-adaptable’ neural
network accelerator is proposed in this paper. The architecture
and behavior of this accelerator is determined only by the way
its C program is designed. The design of the architecture,
programmed in C code, is converted to a description in the form
of a hardware description language such as VHDL or Verilog.
The conversion is carried out by High-Level Synthesis (HLS)
software provided by the Xilinx Vivado development package.
Since the accelerator architecture is fully parameterized in the
C code, it can be tailored freely according to the availability of
FPGA logic elements, and hence implemented by different types
of FPGA. The proposed accelerator has a configurable register
unit, which enables it to dynamically adjust the computing
behavior according to the computing requirements of different
neural networks without changing the design of architecture.

Keywords—FPGA, Adaptable Neural Network Accelerator,
High level synthesize, Parameterized Architecture, Xilinx.

I. INTRODUCTION

The advent of the Internet of Things [1] has facilitated the
gathering of data from devices existing anywhere. It is not
enough to simply receive the data. The value of the data lies
in the insights that may be drawn from it and how the data is
used. Edge-computing performs data analysis in a hybrid of
local 'on-premise’ processing and 'cloud' processing. Much of
the computing is done close to the device which provides great
speed, accuracy and reliability. Other computing is done
using more powerful facilities further away to achieve a wider
range of functionality. A high speed of data processing and
low power consumption is critical for a practical edge
computing system [2], especially with applications that
employ neural networks.

There have been many attempts to accelerate artificial
intelligence algorithms in edge-computing systems. In the
research of Bogoslovskii et al. [3], an ‘approximator’ based on
a multilayer perceptron and a wavelet neural network is
implemented using STM32 microcontrollers, where ARM
‘Cortex M series CPUs’ play the role of implementing the
neural network. Even though ARM Cortex M
microcontrollers are low power devices, the overall power

consumption involved is still quite high in this implementation.

In addition to using CPUs for neural network calculations,
there is also a lot of published research on using GPUs to
implement and accelerate neural network algorithms. For
example, in the research of Jose et al. [4], they used NVIDIA
JETSON TX2 to implement a face recognition monitoring
system. This system achieves 97% accuracy and 7.5 watts of
power consumption. But for some small devices, the power

Zheng Xie
School of Engineering
University of Central Lancashire
Preston, UK
ORCID: 0000-0001-8649-6235

consumption of 7.5 watts is still considered very high.
Nevertheless, the internal structure of the GPU is fixed, and it
is not possible to make hardware-level changes and
optimizations for different neural network structures. In view
of their advantages of re-programmability and power
efficiency, FPGAs have been considered by researchers for
implementing neural network algorithms to accelerate the
calculations. In contrast to CPUs or GPUs, using FPGAs can
achieve both low power consumption and high performance
in one implementation based on the idea of hardware-software
co-design. In the study of Zhang et al. [5], they applied
optimization methods such as ‘loop tiling and transformation’
to improve system performance. Finally, they implemented
the AlexNet [6] network on an FPGA. This implementation
was found to be 17.42 times faster than the CPU
implementation, while the power consumption was only 18.61
watt (W).

In recent research on the use of FPGA neural network
accelerators, thanks to the High Level Synthesis (HLS) tool
designed by Xilinx, the development cycle for designers to use
FPGAs for algorithm acceleration is greatly reduced. HLS
uses a high-level programming language (C or C++) to
generate hardware description language (Verilog or VHDL)
code. For the design levels, HLS derives register transfer level
(RTL) design from the abstract algorithm level [7]. Our main
contribution is a general neural network accelerator
architecture that can be freely tailored according to the FPGA
hardware resources and its logic elements. The features of the
accelerator are determined by the grammatical characteristics
of the C programming. The accelerator computing behaviour
is constrained by the advanced extensible interface (AXI) bus
in an FPGA development platform. Our other contributions
are:

1. Designing and implementing a data acquisition and
processing system structure with Xilinx Zynq series chips,
where a Convolution Neural Network (CNN) is used for data
analysis.

2. Proposing five ways to improve accelerator
performance and evaluating the effect of each of these ways.

3. A neural network accelerator structure, which consists
of a Process Element (PE) as the smallest computing unit and
the AXI bus [8] for the data transmission.

II. SYSTEM STRUCTURE

As shown in Figure 1, the system of data acquisition and
processing consists of two parts: a data collector and a neural
network accelerator. The accelerator is based on a Xilinx
FPGA development board, ZYNQ-7020, in the Xilinx series
of ZYNQ-7000. The on-board chip consists of a processing
system (PS) and programmable logic (PL). An Ethernet with
TCP/IP protocol is applied to transfer data from the collector
to the accelerator. The data collector consists of a Raspberry

Pi and a camera which is for acquiring image data. The
camera could be replaced by other sensors for a different type
of data. Since the Raspberry Pi has abundant general purpose
input and output (GPIO) resources, the system can also drive
actuators according to the output results from the neural
network accelerator.

PS:PL
DDR3
Memory

Model

o WSI Variable

AXI:BUS
o] Newa
: Network
AXIBUS
ﬁ‘ﬁ—'>

Data Stream Dual
(Anyway | "| ARM A9 Core

Data Data Stream

Collection | (Any way
such as

such as
Camera) 1000Mbps TCP)

Raspberry
Pi

Accelerator
Model | Program
Driver Weights [Code

Drive more
peripherals SD |asPI
based on the Card [Flash
results (such as
buzzers, fans,
servo, etc.)

ZYNQ -7000

Fig. 1. Data Acquisition and Processing System Structure.

The neural network accelerator is deployed in the PL part
of the ZYNQ-7020 chip in the form of IP Core, and transmits
data through the powerful AXI bus inside the chip and the
dual-core ARM A9 processor in the PS part of the ZYNQ-
7020 chip. The transmitted data consists of control signals and
the data used for processing. The control signals determine
the behaviour of the internal PE of the accelerator; for
example the size of the feature map in the convolution
processing. The internal data is the images and the values of
the weights of the layers in the neural network. Output data is
the results of the analysis. All the transferred data will be
stored in an external DDR3 memory. The data stored in DDR3
will be updated during the data processing. Generally, the size
of the ZYNQ's on-chip memory limits the number of neural
network weight parameters that can be accommodated. The
actual requirement could exceed 0.65MB. In order to
accommodate more weight parameters, we put the weights
into a SD Card. When the whole system starts to operate, the
ARM A9 processor will load the weight parameters stored in
the SD Card into the DDR3 memory. The code size of the
accelerator design may increase significantly for more
complicated applications, so it is stored externally in a QSPI
FLASH chip rather than in the ZYNQ on-chip memory.

III. NEURAL NETWORK ACCELERATOR ARCHITECTURE

As shown in Figure 2, the neural network accelerator
consists of multiple 'Process Elements' (PE). A PE is the
smallest processing unit in the neural network accelerator, and
each PE has a particular function. For example, PE-1 in Figure
2 realizes the acceleration of the convolution

AXI Busl Neural Network Accelerator

Data Register Data Register Data Register Data Register

Process Process Process Process
Element Element Element |sueesnsannns Element
-1 -2 -3 -N

Control Register Control Register Control Register Control Register

AXI BUS ‘ ‘ g

Fig. 2. Neural Network Accelerator Architecture.

calculation, and PE-2 realizes the padding acceleration. Each
PE has a set of control registers and data registers.

Control registers are used to obtain control signals from
the ARM A9 processor on the ZYNQ PS side. Such control
signals include the number of convolution kernels, the size of
the convolution kernel, the size of the input feature map and
other parameters related to the neural network calculations.
The data register is used to buffer data to facilitate the pipeline
calculation inside the PE. The pipeline is a way of increasing
the speed of data processing. The data register design will be
explained in detail in section IV.B. Each PE is connected to
the PS through the AXI bus to realize data communication.
The number of PEs depends on how much of the FPGA
resources the designer plans to allocate to the neural network
accelerator. For example, one convolutional PE unit in this
paper requires 6,254 logic elements each of which is based on
a look-up-table (LUT).

To clearly demonstrate our research results, we have
applied the PEs to accelerate some common neural networks.
Since different neural networks consume different amounts of
memory in the PE's internal data registers, we constrained the
computation of the neural network so that the neural network
can be deployed on the FPGA. The constraints and focus of
the acceleration are listed below:

A. Calculation constraints

e The feature map size is less than or equal to 320 % 320
(Width x Height), and the number of channels is from
1 to 1024.

e The size of the convolution kernel is 3 X 3 or 1 x 1
(Width x Height).

B. Operators that have been accelerated
e Conv2d convolution, Depthwish Conv2d convolution

[9].

Same Padding (Asymmetric Padding is not supported).
Max Pooling and Average Pooling.

Fully connected layer calculations.

IV. PROCESS ELEMENT ARCHITECTURE

A. Code specification

The Xilinx VIVADO HLS converts C/C++ code into
Verilog/VHDL code. Different code structures will generate
different hardware architectures. For our research, the outer
architecture of each PE is the same. For example, every PE
has a control register and a data register. Both the control
register and the data register are connected to the ARM
Cortex-A9 on the ZYNQ PS through the AXI bus. The inner
architecture of each PE is different, and it depends on the
functions to be implemented by the PE (for example,
convolution, pooling, etc.). A PE code specification is given
by the pseudo code shown in Fig. 3, which ensures that all PEs
have the same outer architecture.

The PE code specification defines that the input of each
PE top-level function can only be an address. This brings two
benefits:

1. The PE can be addressed quickly in DDR3 memory;
2. The PS can manage the memory of each PE more
conveniently.

In the first line of the PE code specification, calculation
constraints are established. Lines 2 to 7 of the code give some
examples of establishing computational constraints. Lines 8
to 10 establish the parameter type through the variable
‘typedef’. There are two types of parameter. One type is a
‘data parameter’ and the other is a ‘register parameter’.

Algorithm 1 Process Element Code Specification

INPUT: Control register address, (reg_t *) Registerqqqr; Weights storage address, (data_t *)Weightsaddr;
The address of the input feature map, (data_t *)Infmapeds-; The address of the output feature map,
(data_t *)Out fmapadar:

OUTPUT: NONE(Directly read and write the input memory address, so the function has no variable
output.)

Set Calculation Constraints;

Calculation Constraints Example:

#de fine MAX DataReg_ Input_fmap size 3 /*The storage space size of the Input data register*/
#de fine MAX DataReg_Output_fmap_size 1 /*The storage space size of the Output data register®/
ete...

}

8: Set Process Element Parameter Type;

9: typedef float data_t; /*Calculation parameter type*/

10: typedef char reg_t; /*Control register parameter type*/

Ne e s sy
-

12: function PROCESS ELEMENT(Registeraqar, Weights,qay, Infmapada,, Out frnapaqar)
13 /*Construct function param AXI bus*/

14: #pragma HLS I FACE m_axi port=Register_addr

15 #pragma HLS T FACE m_axi port=Weights_addr

16: #pragma HLS I FACE m_axi port=Infmap_addr

17. #pragma HLS INTERFACE m_axi port=Outfmap_addr

18

19 "unction_Block{

20: the address input by the function, and read and write the data in the address according to
the PE function to be realized;

21

22

23 return NONE

24: end function

Fig. 3. Process Element Code Specification

Data parameters store the input, intermediate values and
the resulting values during the PE calculation. Register
parameters are responsible for controlling the process during
the PE calculation. Such design gives the capability to quickly
adjust the resource consumption of PE calculations. Lines 14
to 17 of the code feed the input variables of the PE function
into the AXI bus, and transmit the data through the AXI bus.
Lines 19 to 21 define the PE function block, which determines
the function of the PE.

B. Performance Improvement Methods

The above discussion proposed a flexible neural network
accelerator architecture. However, for practical applications,
the performance still needs to be further tuned. In this section,
five methods are proposed to improve the performance of each
PE, which eventually improves the overall performance of the
accelerator. The five methods are as follows:

a) Increasing the input clock frequency of the PE.

When the clock frequency was 100 MHz, its inference
speed was 113 Frames Per Second (FPS). Increasing the
clock frequency to 250 MHz increased the PE speed to 282
FPS. The computational speed of the PE was found to be
almost linearly dependent on the clock frequency as shown
in Fig. 4.

Clock Frequency

200

150

FPS

100

0 50 100 150 200 250 300

Clock Frequency(MHz)

Fig. 4. PE Frames per Second vs Clock Frequency.

b) Enabling the Data Cache of the ARM A9 processor.

The data cache will speed up the data transfer rate between
the ARM Cortex-A9 processor and the PEs. The process is
actually mapping access to DDR3 memory addresses. Fig.

5 shows that an improvement of 18.5% in PE performance
was achieved, in terms of FPS, by enabling the Data Cache.

Data Cache

pracceot _ e
e ceon _ e

Fig. 5. Impact of Data Cache on PE Performance.

¢) Quantising parameters and performing parameter fiision.
Embedded systems and FPGAs commonly have low
computational performance and limited RAM. If the data
type of the neural network weights is floating point, for
example float32, this may take up too much computing
resources and reduce the inference speed. To increase the
inference speed, quantised fixed point weights may be used,
though this will be at the expense of some reduction in the
accuracy of the neural network. The performace of
different fixed point quantisation schemes is demonstrated
in Fig. 6 and Fig. 7.
As shown in Fig. 6, a processing speed of 1458 FPS was
achieved using ‘int8’ quantisation (signed 8 bits per value).
This compares with 140 FPS for float32, 278 FPS for int16
with Q12 format and 282 FPS for int16 with Q8 format.
Further, the use of 'int8' reduced the consumption of
computational resources of 49 DSP units and 7
BRAM 18K. to 40 FPS (for DSP) and 7 FPS (for
BRAM 18K). This compares with 199 and 190 FPS (DSP
and BRAM 18K respectively) for float32, 90 and 150 FPS
(DSP and BRAM_18K) for int16 with Q12 format and 90
and 128 FPS for int16 with Q8 format. Therefore there is
a very significant speed improvement together with a very
significant reduction computational resources to be gained
by using 'int8' quantisation.
Fig.7 presents FPS performance improvement under the
FPGA resource of LUT and flip-flop register (FF). The
idea of quantisation can also be implemented using
Convolution layer and Batch Normalization [10] where
parameter fusion can be applied [11].

Parameter Quantification -1

1458

Int8 49
7
Float32 199
390
Fixed Point 1 90
160
Fixed Point 2 90
128

o
N
=1
s
IS
]
S

600 800 1000 1200 1400 1600

FPS mDSP mBRAM_18K

Fig. 6. Quantisation vs Resource Consumption of DSP and BRAM_ 18K
(Fixed Point 1: 16 bit Q12 format; Fixed Point 2: 16 bit Q8 format.)

Parameter Quantification-2
Int8 7817
7733
Float32 65368
73230
Fixed Point 1 18969
24426
Fixed Point 2 18306
22867

0 10000 20000 30000 40000 50000 60000 70000 80000

mlUT mFF

Fig. 7. Quantisation vs Resource Consumption of LUT and Flip-Flop
Register (Fixed Point 1: 16bit Q12 format; Fixed Point 2: 16bit Q8 format.)

d) Performing the entire calculation within a single PE.

To further improve computational speed, the calculation of
the entire neural network can be performed within a single
PE, and the neural network weights can be stored in the
Block RAM (BRAM) of the FPGA. The speed of
accessing the BRAM will be much faster than accessing
DDR3 memory through the AXI bus. Since the BRAM size
varies greatly among different types of FPGA, the designer
needs to ensure that the weights of the entire neural
network occupy a memory size less than or equal to the
BRAM size. The internal BRAM size of the ZYNQ-7020
FPGA used in our research is 0.625 MBytes. We used the
proposed method to accelerate a small 'character
recognition' network, illustrated in Fig. 8, which contains
79,242 parameters. An open source of ‘Chars 74K’ dataset
was used for the PE performance evaluation. Characters
with three computer typing fonts, normal, italic and bold,
were extracted from the dataset. These characters in the
dataset were divided into 62 classes (0-9, A-Z, a-z). Each
class could be normal, italic or bold font. In our experiment,
ten classes of characters 0-9 were used. The final extracted
dataset used for testing the accelerator consisted of 10,160
single-channel images of 128 by 128 pixels, where there
were 1016 images for each class. Its resource consumption
and performance are shown in Fig. 9. A sample of the
handwritten numbers that were recognised successfully in
real time is shown in Fig. 10.

Fig. 8. Neural Network Structure

PE For Network

= |
T = =

BRAM_18K

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

mUsed mUnused

Fig. 9. PE For Network Resource Consumption of FPGA Resources.

Fig. 10. Handwritten Numbers recognised successfully

e) Implementing data register and pipelined operation within
a single PE [12].

Although it is possible to achieve PE-level pipeline
acceleration by using multiple PEs for multiple calculation
functions, the operations involved in each function are still
taken sequentially within each PE. Therefore, to further
improve the performance of each PE, pipeline calculation
may be implemented inside the PEs.
The PE operations can be summarized as three steps:

1. Read the address of the control register, weights and

input data from DDR3 memory.

2. Run the calculation and obtain the result.

3. Write the result to DDR3 memory.
Steps 1 and 3 are to input data from and output data to
DDR3 memory, which cause the PE to spend a lot of time
on data transferring. If the time of data transferring is
shortened, the performance of the PE can be improved.
After implementing the pipeline in a PE, operations of
input/output data and algorithm calculation can be
parallelized within a single clock cycle. Pseudo code for
the implementation is shown in Fig. 11.

To illustrate the performance improvement of the
implementation, the calculation of a convolution PE may
be visualized. Figure 12 shows the typical behaviour of a
convolution PE without parallelization (kernel size =3 x 3,
stride = 1). Figure 13 demonstrates the typical behaviour of
a parallelised PE convolution, where the kernel size is 3 X
3 and the stride equals 1. It can be observed that the
convolution PE can load, calculate and store two different
sets of data within one operation cycle.

Algorithm 2 Data register and pipeline of PE

INPUT: Pipeline start flag. Pipeline.: Pipeline control signal, Pipeline.: Input data to the data register,
Inputy; Index position row, : Index position col, j:

OUTPUT: Output data to the data register, Output,;

Pipeline, «+ 1

Pipeline, < 1

i 0

j<0

datal < 0 /*Data register 1%/

data2 « 0 /*Data register 2%/

if Pipeline. == 1 then

8: Read the datal at index position [i,j] of Input..

9: Pipeline. < 0

10: end if

11: for i = 0,j = 0 — all_data_index length do

12: if Pipeline. == 1 then

Qoo e

=

13: Read the data2 at index position [i, j+1] of Input,.

14: else

15: Read the datal at index position [i,j+1] of Input,.

16 end if

17, if Pipeline. == 1 then

18: Calculate the datal at index position [, j].

19: Save the datal result to index position [i, j] of Output,.
20: Pipeline. < 0

21: else

22: Calculate the data2 at index position [i, j].

23: Save the data2 result to index position [i, j] of Output,.
24 Pipeline, + 1

25 end if

26: end for

27: return Quiputs;

Fig. 11. Pseudo Code of Data Register and Pipeline.

This illustrates how the parallelization improves the
efficiency of the data processing. The parallelisation is
illustrated at register level as shown in Figure 14, where the
Datal and Data? registers alternately perform calculations
for the entire Feature Map. Table 1 provides the states of the
parameters for the first 5 operation cycles.

W Load, calculate, save

eseessscssscssse

OO

CEEEC]
aaann

HEE
[
0

[
1000

[E calculate and Save

[| Load

. Load, calculate, save

CENEEC
Eanana

ONmEC]
Ooo0gd

Fig. 13. The Process of Convolution PE with Parallelisation.

1

[[Jpata1(Data register 1)
DDalaZ(Data register 2)
[T][T] Datat and Data2

Fig. 14. Parallelization of Convolution PE at Register Level.

Initialization PE calculation process parameter changes
Pipeline_s 1 0 1 0 1
Operate: D1_L D2.L,D1 C|D1L D2 C|D2L D1 C|D1L D2C|D2L D2C
Output Data Index: [0, 0]{ [0, 1], [0, 0]} [0. 2], [0, 1] [[0. 3], [0, 2] | [0, 4], [0. 3] [[0, 5]. [0, 4]
NOTE: D1_L=Datal Load; D1_C=Data 1 Calculate; D2_L=Data2 Load; D2_C=Data? Calculate.

Table. 1. States of the Parameters for the First Five Operation Cycles.

It is not advisable to parallelise all PEs even though this
could potentially improve the processing speed. Parallelising
all PEs may lead to more FPGA logic elements (IE) being
required than are available. Since FPGA logic element
resources are usually limited, parallelisation should be
prioritised for PE convolution calculations that consume a lot
of FPGA resources [13]. Figure 15 below shows the impact
of parallelisation on the calculation speed and resource
consumption of a convolution PE.

Data Register And Pipeline

4545
P ‘ 6993

BRAM_18K h

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

mNo_Data Reg&Pipeline m Data Reg&Pipeline

Fig. 15. Performance of Data Register Pipelining vs Resource
Consumption.

V. EVALUATION

A. Resource Consumption

The PE consumption of BRAM 18K and DSP resources is
illustrated in Figure 16. Figure 17 illustrates the
consumption of flip-flop (FF) and look-up table (LUT)
resources. It is observed that the overall resource
consumption in parameterising PE calculation functions is
much higher than is consumed for implementing the entire
neural network in a PE for Network. For example, 29,144
LUTs are consumed in a parameterised PE, while 18,306
LUTs are used in a PE for Network.

PE Resources-1
140

128

120
100 90
80 74

60

40

» 2 25
20 13
0 - - mll Em

Conv2D Pool Padding Activation Dense PE For Network

mBRAM_18K m DSP

Fig. 16. PE Resource Consumption

PE Resources-2

25000 22867

20000 18306
15000

9032 8966,
10000 796 7517 8114

6254
5006 4990 51564780
- I I I I
0 I

Conv2D Pool Padding Activation Dense PE For Network

mFF mLUT

Fig. 17. PE Resource Consumption (2)

B. Computing Performance

Figure 18 compares the performances of different
inference implementations of the same neural network whose
structure is shown in Fig. 8. The GPU inference with
TensorFlow 2 appears to have the lowest computing
performance with a processing speed of 18 FPS. The Keras
package was used to test the inference speed of Tensorflow 2.

It proved to be very inefficient without any code optimization.

A CPU running C-code achieved a processing speed of 171
FPS which is much better than was achieved with the GPU
implementation. The computing performance based on PE
for Network and implemented with a FPGA was found to be
15.6 times faster than the GPU implementation, and 1.6 times
faster than the CPU implementation.

Performance For Network(FPS)

Tensorflow2(GTX 1660TI) . 18

Fren _ 2
1594008 _ e

0 50 100 150 200 250 300

Fig. 18. Inference Performances on Three Platforms

Figure 19 lists the computing performance of different
functional PEs. By comparing the performance of PEs
between CPU and FPGA, we can see that the performance of
FPGA and CPU is very similar for convolution and padding
calculation.

Performance(FPS)

200000

150000
105556

100000
68027 70472 70274
51706 55555
50000
6822 6993 14492
0 -

Conv2D Pool Padding Activation Dense

Wi5-9400F mFPGA

Fig. 19. Performance of Different Functional Pes.

For Pooling, the algorithm we used requires a lot of loops
and traversal calculations, whose operation is very memory
bandwidth intensive. Since we did not apply the
parallelisation in section IV.B to Pooling PE, the performance
is much lower compared to that of CPU. For Activation and
Dense calculation, the performance of FPGA is higher than
that of CPU.

C. Energy Consumption Comparison

A comparison of the power efficiencies of the different
implementations is given in Figure 20 in terms of FPS per
watt. The value of the FPGA power consumption was
obtained from the Xilinx Vivado real-time power data output.
The CPU and GPU power consumptions were defined by
their Thermal Design Power (TDP) data [14], which was
provided by the manufacturers.

Power

140 129.7745053

120
120
100
80
65
60
40
20
2173 2.630769231 0.15
0 — —

FPGA i5-9400F GTX1660TI

m Power(W) mFPSPer W

Fig. 20. FPS Per Watt

VI. CONCLUSION

The FPGA Neural Network Accelerator proposed in this
paper has been shown to offer greater computational
performance compared to consumer-grade CPU and GPU
designs and had much lower power consumption and higher
efficiency. The proposed design can be widely used in the
field of embedded edge computing for flexible and
extensible neural network computation. Future work can be
focused on more neural network types.

In many neural network accelerators, the architecture is
fixed for a specific application. When the neural network
application is changed, the number of convolutional window
slides, hence the size of the convolutional kernel and other
computational parameters inside the accelerator, need to be
redesigned to have the effect of acceleration, which means a
different architecture of an accelerator needs to be designed.
This research has implemented a general architecture for the
accelerator, where the computational parameters are
configured as registers which are connected to an ARM
Cortex A9 processor via the AXI bus. When the neural
network structure is changed, there is no need to modify the
accelerator architecture. The user can simply reset the
registers via the ARM Cortex A9 processor to adapt to new
neural network.

In addition, the general accelerator architecture
implemented by FPGA has very low power consumption.
For a specific neural network application, an 15-8400 CPU
implementation consumed a power of 65 watts, while the
corresponding FPGA implementation consumed only 2.173
watts. The design of the accelerator and the
implementation of the FPGA is applicable for 'Internet of

Things' (IoT) edge computing systems which may rely on
batteries as power supplies.

ACKNOWLEDGMENT

Further research will be carried out and evaluated on a

more powerful FPGA kit, which is funded by Research
England'. We acknowledge the support provided.

REFERENCES

Atzori, Luigi, Antonio Iera, and Giacomo Morabito. "The internet of
things: A survey." Computer networks 54.15 (2010): 2787-2805.

Shi, Weisong, et al. "Edge computing: Vision and challenges." IEEE
internet of things journal 3.5 (2016): 637-646.

Bogoslovskii, Ivan A., et al. "Implementation of an Approximator
Based on a Multilayer Perceptron and Wavelet-Neural Network on the
STM32 Microcontroller." 2020 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus).
1EEE, 2020.

Jose, Edwin, et al. "Face recognition based surveillance system using
facenet and mtenn on jetson tx2." 2019 5th International Conference
on Advanced Computing & Communication Systems (ICACCS). IEEE,
2019.

[10]

[11]
[12]

[13]

Zhang, Chen, et al. "Optimizing fpga-based accelerator design for deep
convolutional neural networks." Proceedings of the 2015
ACM/SIGDA international symposium on field-programmable gate
arrays. 2015.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in
neural information processing systems 25 (2012): 1097-1105.

Meeus, Wim, et al. "An overview of today’s high-level synthesis
tools." Design Automation for Embedded Systems 16.3 (2012): 31-51.
AMBA AXI Protocol Specification, Sunnyvale, CA, USA:Axis, 2003
Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural
networks for mobile vision applications." arXiv preprint
arXiv:1704.04861 (2017).

Ioffe, Sergey, and Christian Szegedy. "Batch normalization:
Accelerating deep network training by reducing internal covariate
shift." International conference on machine learning. PMLR, 2015.
Jung, Wonkyung, et al. "Restructuring batch normalization to
accelerate CNN training." arXiv preprint arXiv:1807.01702 (2018).
Ramamoorthy, Chittoor V., and Hon Fung Li. "Pipeline architecture."
ACM Computing Surveys (CSUR) 9.1 (1977): 61-102.

Burrus, C. Sidney, and T. W. Parks. "Convolution Algorithms."
Citeseer: New York, NY, USA (1985).

[14] John L. Hennessy; David A. Patterson. "Computer Architecture: A

Quantitative Approach (5th ed.), " Elsevier. p. 22. ISBN 978-0-12-
383872-8 (2012).

