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Abstract— As Artificial Intelligence is becoming embedded 
in people’s lives, the evolution of Internet of Things is moving 
towards edge computing where the speed and power 
consumption in data processing is critical.  The feature of re-
programmability and power efficiency has made FPGA a 
promising edge processing hardware platform for accelerating 
deep neural networks. An FPGA ‘resource-adaptable’ neural 
network accelerator is proposed in this paper. The architecture 
and behavior of this accelerator is determined only by the way 
its C program is designed. The design of the architecture, 
programmed in C code, is converted to a description in the form 
of a hardware description language such as VHDL or Verilog. 
The conversion is carried out by High-Level Synthesis (HLS) 
software provided by the Xilinx Vivado development package.  
Since the accelerator architecture is fully parameterized in the 
C code, it can be tailored freely according to the availability of 
FPGA logic elements, and hence implemented by different types 
of FPGA. The proposed accelerator has a configurable register 
unit, which enables it to dynamically adjust the computing 
behavior according to the computing requirements of different 
neural networks without changing the design of architecture. 

Keywords—FPGA, Adaptable Neural Network Accelerator, 
High level synthesize, Parameterized Architecture, Xilinx. 

I. INTRODUCTION  
The advent of the Internet of Things [1] has facilitated the 

gathering of data from devices existing anywhere. It is not 
enough to simply receive the data. The value of the data lies 
in the insights that may be drawn from it and how the data is 
used. Edge-computing performs data analysis in a hybrid of 
local 'on-premise' processing and 'cloud' processing.  Much of 
the computing is done close to the device which provides great 
speed, accuracy and reliability.  Other computing is done 
using more powerful facilities further away to achieve a wider 
range of functionality. A high speed of data processing and 
low power consumption is critical for a practical edge 
computing system [2], especially with applications that 
employ neural networks.  

There have been many attempts to accelerate artificial 
intelligence algorithms in edge-computing systems.  In the 
research of Bogoslovskii et al. [3], an ‘approximator’ based on 
a multilayer perceptron and a wavelet neural network is 
implemented using STM32 microcontrollers, where ARM 
‘Cortex M series CPUs’ play the role of implementing the 
neural network.  Even though ARM Cortex M 
microcontrollers are low power devices, the overall power 
consumption involved is still quite high in this implementation.  
In addition to using CPUs for neural network calculations, 
there is also a lot of published research on using GPUs to 
implement and accelerate neural network algorithms.  For 
example, in the research of Jose et al. [4], they used NVIDIA 
JETSON TX2 to implement a face recognition monitoring 
system. This system achieves 97% accuracy and 7.5 watts of 
power consumption. But for some small devices, the power 

consumption of 7.5 watts is still considered very high. 
Nevertheless, the internal structure of the GPU is fixed, and it 
is not possible to make hardware-level changes and 
optimizations for different neural network structures. In view 
of their advantages of re-programmability and power 
efficiency, FPGAs have been considered by researchers for 
implementing neural network algorithms to accelerate the 
calculations.  In contrast to CPUs or GPUs, using FPGAs can 
achieve both low power consumption and high performance 
in one implementation based on the idea of hardware-software 
co-design.  In the study of Zhang et al. [5], they applied 
optimization methods such as ‘loop tiling and transformation’ 
to improve system performance. Finally, they implemented 
the AlexNet [6] network on an FPGA.   This implementation 
was found to be 17.42 times faster than the CPU 
implementation, while the power consumption was only 18.61 
watt (W). 

In recent research on the use of FPGA neural network 
accelerators, thanks to the High Level Synthesis (HLS) tool 
designed by Xilinx, the development cycle for designers to use 
FPGAs for algorithm acceleration is greatly reduced. HLS 
uses a high-level programming language (C or C++ ) to 
generate hardware description language (Verilog or VHDL) 
code.  For the design levels, HLS derives register transfer level 
(RTL) design from the abstract algorithm level [7].  Our main 
contribution is a general neural network accelerator 
architecture that can be freely tailored according to the FPGA 
hardware resources and its logic elements. The features of the 
accelerator are determined by the grammatical characteristics 
of the C programming. The accelerator computing behaviour 
is constrained by the advanced extensible interface (AXI) bus 
in an FPGA development platform.  Our other contributions 
are: 

1. Designing and implementing a data acquisition and 
processing system structure with Xilinx Zynq series chips, 
where a Convolution Neural Network (CNN) is used for data 
analysis.   

2. Proposing five ways to improve accelerator 
performance and evaluating the effect of each of these ways. 

3. A neural network accelerator structure, which consists 
of a Process Element (PE) as the smallest computing unit and 
the AXI bus [8] for the data transmission.   

II. SYSTEM STRUCTURE 
As shown in Figure 1, the system of data acquisition and 

processing consists of two parts: a data collector and a neural 
network accelerator. The accelerator is based on a Xilinx 
FPGA development board, ZYNQ-7020, in the Xilinx series 
of ZYNQ-7000. The on-board chip consists of a processing 
system (PS) and programmable logic (PL).  An Ethernet with 
TCP/IP protocol is applied to transfer data from the collector 
to the accelerator.  The data collector consists of a Raspberry 



Pi and a camera which is for acquiring image data.  The 
camera could be replaced by other sensors for a different type 
of data.  Since the Raspberry Pi has abundant general purpose 
input and output (GPIO) resources, the system can also drive 
actuators according to the output results from the neural 
network accelerator. 

 
Fig. 1. Data Acquisition and Processing System Structure. 

The neural network accelerator is deployed in the PL part 
of the ZYNQ-7020 chip in the form of IP Core, and transmits 
data through the powerful AXI bus inside the chip and the 
dual-core ARM A9 processor in the PS part of the ZYNQ-
7020 chip. The transmitted data consists of control signals and 
the data used for processing.  The control signals determine 
the behaviour of the internal PE of the accelerator; for 
example the size of the feature map in the convolution 
processing.  The internal data is the images and the values of 
the weights of the layers in the neural network. Output data is 
the results of the analysis.  All the transferred data will be 
stored in an external DDR3 memory. The data stored in DDR3 
will be updated during the data processing. Generally, the size 
of the ZYNQ's on-chip memory limits the number of neural 
network weight parameters that can be accommodated.  The 
actual requirement could exceed 0.65MB.  In order to 
accommodate more weight parameters, we put the weights 
into a SD Card. When the whole system starts to operate, the 
ARM A9 processor will load the weight parameters stored in 
the SD Card into the DDR3 memory. The code size of the 
accelerator design may increase significantly for more 
complicated applications, so it is stored externally in a QSPI 
FLASH chip rather than in the ZYNQ on-chip memory.  

III. NEURAL NETWORK ACCELERATOR ARCHITECTURE 
As shown in Figure 2, the neural network accelerator 

consists of multiple 'Process Elements' (PE). A PE is the 
smallest processing unit in the neural network accelerator, and 
each PE has a particular function. For example, PE-1 in Figure 
2 realizes the acceleration of the convolution  

 

Fig. 2. Neural Network Accelerator Architecture. 

calculation, and PE-2 realizes the padding acceleration.  Each 
PE has a set of control registers and data registers.   

Control registers are used to obtain control signals from 
the ARM A9 processor on the ZYNQ PS side. Such control 
signals include the number of convolution kernels, the size of 
the convolution kernel, the size of the input feature map and 
other parameters related to the neural network calculations. 
The data register is used to buffer data to facilitate the pipeline 
calculation inside the PE. The pipeline is a way of increasing 
the speed of data processing. The data register design will be 
explained in detail in section IV.B. Each PE is connected to 
the PS through the AXI bus to realize data communication.  
The number of PEs depends on how much of the FPGA 
resources the designer plans to allocate to the neural network 
accelerator. For example, one convolutional PE unit in this 
paper requires 6,254 logic elements each of which is based on 
a look-up-table (LUT). 

To clearly demonstrate our research results, we have 
applied the PEs to accelerate some common neural networks.  
Since different neural networks consume different amounts of 
memory in the PE's internal data registers, we constrained the 
computation of the neural network so that the neural network 
can be deployed on the FPGA.  The constraints and focus of 
the acceleration are listed below: 

A. Calculation constraints 
• The feature map size is less than or equal to 320 × 320 

(Width × Height), and the number of channels is from 
1 to 1024. 

• The size of the convolution kernel is 3 × 3 or 1 × 1 
(Width × Height). 

B. Operators that have been accelerated 
• Conv2d convolution, Depthwish Conv2d convolution 

[9]. 
• Same Padding (Asymmetric Padding is not supported). 
• Max Pooling and Average Pooling. 
• Fully connected layer calculations. 

IV. PROCESS ELEMENT ARCHITECTURE 

A. Code specification 
The Xilinx VIVADO HLS converts C/C++ code into 

Verilog/VHDL code.  Different code structures will generate 
different hardware architectures. For our research, the outer 
architecture of each PE is the same. For example, every PE 
has a control register and a data register.  Both the control 
register and the data register are connected to the ARM 
Cortex-A9 on the ZYNQ PS through the AXI bus. The inner 
architecture of each PE is different, and it depends on the 
functions to be implemented by the PE (for example, 
convolution, pooling, etc.).  A PE code specification is given 
by the pseudo code shown in Fig. 3, which ensures that all PEs 
have the same outer architecture.   

The PE code specification defines that the input of each 
PE top-level function can only be an address. This brings two 
benefits:  
1. The PE can be addressed quickly in DDR3 memory;  
2. The PS can manage the memory of each PE more 
conveniently.  

In the first line of the PE code specification, calculation 
constraints are established.  Lines 2 to 7 of the code give some 
examples of establishing computational constraints.  Lines 8 
to 10 establish the parameter type through the variable 
‘typedef’.  There are two types of parameter.  One type is a 
‘data parameter’ and the other is a ‘register parameter’. 



 

Fig. 3. Process Element Code Specification 

Data parameters store the input, intermediate values and 
the resulting values during the PE calculation.  Register 
parameters are responsible for controlling the process during 
the PE calculation. Such design gives the capability to quickly 
adjust the resource consumption of PE calculations. Lines 14 
to 17 of the code feed the input variables of the PE function 
into the AXI bus, and transmit the data through the AXI bus. 
Lines 19 to 21 define the PE function block, which determines 
the function of the PE. 

B. Performance Improvement Methods 
The above discussion proposed a flexible neural network 

accelerator architecture. However, for practical applications, 
the performance still needs to be further tuned.  In this section, 
five methods are proposed to improve the performance of each 
PE, which eventually improves the overall performance of the 
accelerator.  The five methods are as follows: 

a) Increasing the input clock frequency of the PE.  
When the clock frequency was 100 MHz, its inference 
speed was 113 Frames Per Second (FPS).  Increasing the 
clock frequency to 250 MHz increased the PE speed to 282 
FPS.  The computational speed of the PE was found to be 
almost linearly dependent on the clock frequency as shown 
in Fig. 4.  

 
Fig. 4. PE Frames per Second vs Clock Frequency. 

 b) Enabling the Data Cache of the ARM A9 processor. 
The data cache will speed up the data transfer rate between 
the ARM Cortex-A9 processor and the PEs. The process is 
actually mapping access to DDR3 memory addresses. Fig. 

5 shows that an improvement of 18.5% in PE performance 
was achieved, in terms of FPS, by enabling the Data Cache. 

 

 
Fig. 5. Impact of Data Cache on PE Performance. 

 c) Quantising parameters and performing parameter fusion.  
Embedded systems and FPGAs commonly have low 
computational performance and limited RAM. If the data 
type of the neural network weights is floating point, for 
example float32, this may take up too much computing 
resources and reduce the inference speed. To increase the 
inference speed, quantised fixed point weights may be used, 
though this will be at the expense of some reduction in the 
accuracy of the neural network.  The performace of 
different fixed point quantisation schemes is demonstrated 
in Fig. 6 and Fig. 7.   
As shown in Fig. 6, a processing speed of 1458 FPS was 
achieved using ‘int8’ quantisation (signed 8 bits per value).  
This compares with 140 FPS for float32, 278 FPS for int16 
with Q12 format and 282 FPS for int16 with Q8 format.  
Further, the use of 'int8' reduced the consumption of 
computational resources of 49 DSP units and 7 
BRAM_18K. to 40 FPS (for DSP) and 7 FPS (for 
BRAM_18K).   This compares with 199 and 190 FPS (DSP 
and BRAM_18K respectively) for float32, 90 and 150 FPS 
(DSP and BRAM_18K) for int16 with Q12 format and 90 
and 128 FPS for int16 with Q8 format.  Therefore there is 
a very significant speed improvement together with a very 
significant reduction computational resources to be gained 
by using 'int8' quantisation.   
Fig.7 presents FPS performance improvement under the 
FPGA resource of LUT and flip-flop register (FF).  The 
idea of quantisation can also be implemented using 
Convolution layer and Batch Normalization [10] where 
parameter fusion can be applied [11].  

 
Fig. 6. Quantisation vs Resource Consumption of DSP and BRAM_18K  

(Fixed Point 1:  16 bit Q12 format; Fixed Point 2: 16 bit Q8 format.) 



 
Fig. 7. Quantisation vs Resource Consumption of LUT and Flip-Flop 

Register (Fixed Point 1: 16bit Q12 format; Fixed Point 2: 16bit Q8 format.) 

d) Performing the entire calculation within a single PE. 
To further improve computational speed, the calculation of 
the entire neural network can be performed within a single 
PE, and the neural network weights can be stored in the 
Block RAM (BRAM) of the FPGA.  The speed of 
accessing the BRAM will be much faster than accessing 
DDR3 memory through the AXI bus. Since the BRAM size 
varies greatly among different types of FPGA, the designer 
needs to ensure that the weights of the entire neural 
network occupy a memory size less than or equal to the 
BRAM size. The internal BRAM size of the ZYNQ-7020 
FPGA used in our research is 0.625 MBytes. We used the 
proposed method to accelerate a small 'character 
recognition' network, illustrated in Fig. 8, which contains 
79,242 parameters.  An open source of ‘Chars 74K’ dataset 
was used for the PE performance evaluation. Characters 
with three computer typing fonts, normal, italic and bold, 
were extracted from the dataset.  These characters in the 
dataset were divided into 62 classes (0-9, A-Z, a-z).  Each 
class could be normal, italic or bold font.  In our experiment, 
ten classes of characters 0-9 were used. The final extracted 
dataset used for testing the accelerator consisted of 10,160 
single-channel images of 128 by 128 pixels, where there 
were 1016 images for each class.  Its resource consumption 
and performance are shown in Fig. 9. A sample of the 
handwritten numbers that were recognised successfully in 
real time is shown in Fig. 10.  

 
Fig. 8. Neural Network Structure 

 
Fig. 9. PE For Network Resource Consumption of FPGA Resources. 

 

Fig. 10. Handwritten Numbers recognised successfully 

e) Implementing data register and pipelined operation within 
a single PE [12].   

Although it is possible to achieve PE-level pipeline 
acceleration by using multiple PEs for multiple calculation 
functions, the operations involved in each function are still 
taken sequentially within each PE. Therefore, to further 
improve the performance of each PE, pipeline calculation 
may be implemented inside the PEs.  
The PE operations can be summarized as three steps: 

1. Read the address of the control register, weights and 
input data from DDR3 memory. 

2. Run the calculation and obtain the result.  
3. Write the result to DDR3 memory.  

Steps 1 and 3 are to input data from and output data to 
DDR3 memory, which cause the PE to spend a lot of time 
on data transferring. If the time of data transferring is 
shortened, the performance of the PE can be improved. 
After implementing the pipeline in a PE, operations of 
input/output data and algorithm calculation can be 
parallelized within a single clock cycle. Pseudo code for 
the implementation is shown in Fig. 11. 
 

To illustrate the performance improvement of the 
implementation, the calculation of a convolution PE may 
be visualized. Figure 12 shows the typical behaviour of a 
convolution PE without parallelization (kernel size = 3 × 3, 
stride = 1). Figure 13 demonstrates the typical behaviour of 
a parallelised PE convolution, where the kernel size is 3 × 
3 and the stride equals 1.  It can be observed that the 
convolution PE can load, calculate and store two different 
sets of data within one operation cycle.   



 
Fig. 11. Pseudo Code of Data Register and Pipeline. 

This illustrates how the parallelization improves the 
efficiency of the data processing. The parallelisation is 
illustrated at register level as shown in Figure 14, where the 
Data1 and Data2 registers alternately perform calculations 
for the entire Feature Map. Table 1 provides the states of the 
parameters for the first 5 operation cycles.   

 

 
Fig. 12. The Process of Convolution PE without Parallelisation. 

 

 
Fig. 13. The Process of Convolution PE with Parallelisation. 

 

 
Fig. 14. Parallelization of Convolution PE at Register Level. 

 
Table. 1. States of the Parameters for the First Five Operation Cycles. 

It is not advisable to parallelise all PEs even though this 
could potentially improve the processing speed. Parallelising 
all PEs may lead to more FPGA logic elements (IE) being 
required than are available.  Since FPGA logic element 
resources are usually limited, parallelisation should be 
prioritised for PE convolution calculations that consume a lot 
of FPGA resources [13].  Figure 15 below shows the impact 
of parallelisation on the calculation speed and resource 
consumption of a convolution PE. 

 
Fig. 15. Performance of Data Register Pipelining vs Resource 

Consumption. 

V. EVALUATION 

A. Resource Consumption 
The PE consumption of BRAM_18K and DSP resources is 

illustrated in Figure 16.   Figure 17 illustrates the 
consumption of flip-flop (FF) and look-up table (LUT) 
resources.  It is observed that the overall resource 
consumption in parameterising PE calculation functions is 
much higher than is consumed for implementing the entire 
neural network in a PE for Network. For example, 29,144 
LUTs are consumed in a parameterised PE, while 18,306 
LUTs are used in a PE for Network.  

 
Fig. 16. PE Resource Consumption 



 
Fig. 17. PE Resource Consumption (2) 

B. Computing Performance 
Figure 18 compares the performances of different 

inference implementations of the same neural network whose 
structure is shown in Fig. 8. The GPU inference with 
TensorFlow 2 appears to have the lowest computing 
performance with a processing speed of 18 FPS.  The Keras 
package was used to test the inference speed of Tensorflow 2. 
It proved to be very inefficient without any code optimization.  
A CPU running C-code achieved a processing speed of 171 
FPS which is much better than was achieved with the GPU 
implementation.  The computing performance based on PE 
for Network and implemented with a FPGA was found to be 
15.6 times faster than the GPU implementation, and 1.6 times 
faster than the CPU implementation. 

 
Fig. 18. Inference Performances on Three Platforms 

Figure 19 lists the computing performance of different 
functional PEs. By comparing the performance of PEs 
between CPU and FPGA, we can see that the performance of 
FPGA and CPU is very similar for convolution and padding 
calculation. 

 
Fig. 19. Performance of Different Functional Pes. 

For Pooling, the algorithm we used requires a lot of loops 
and traversal calculations, whose operation is very memory 
bandwidth intensive. Since we did not apply the 
parallelisation in section IV.B to Pooling PE, the performance 
is much lower compared to that of CPU. For Activation and 
Dense calculation, the performance of FPGA is higher than 
that of CPU. 

C. Energy Consumption Comparison 
A comparison of the power efficiencies of the different 

implementations is given in Figure 20 in terms of FPS per 
watt.  The value of the FPGA power consumption was 
obtained from the Xilinx Vivado real-time power data output. 
The CPU and GPU power consumptions were defined by 
their Thermal Design Power (TDP) data [14], which was 
provided by the manufacturers.  

 
Fig. 20. FPS Per Watt 

VI. CONCLUSION 
The FPGA Neural Network Accelerator proposed in this 

paper has been shown to offer greater computational 
performance compared to consumer-grade CPU and GPU 
designs and had much lower power consumption and higher 
efficiency. The proposed design can be widely used in the 
field of embedded edge computing for flexible and 
extensible neural network computation.  Future work can be 
focused on more neural network types. 

In many neural network accelerators, the architecture is 
fixed for a specific application. When the neural network 
application is changed, the number of convolutional window 
slides, hence the size of the convolutional kernel and other 
computational parameters inside the accelerator, need to be 
redesigned to have the effect of acceleration, which means a 
different architecture of an accelerator needs to be designed. 
This research has implemented a general architecture for the 
accelerator, where the computational parameters are 
configured as registers which are connected to an ARM 
Cortex A9 processor via the AXI bus. When the neural 
network structure is changed, there is no need to modify the 
accelerator architecture. The user can simply reset the 
registers via the ARM Cortex A9 processor to adapt to new 
neural network.  

In addition, the general accelerator architecture 
implemented by FPGA has very low power consumption. 
For a specific neural network application, an I5-8400 CPU 
implementation consumed a power of 65 watts, while the 
corresponding FPGA implementation consumed only 2.173 
watts.   The design of the accelerator and the 
implementation of the FPGA is applicable for 'Internet of 



Things' (IoT) edge computing systems which may rely on 
batteries as power supplies.   
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